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Abstract

Rett syndrome (RTT) is a neurodevelopmental disorder caused by a mutation
in the X-linked MECP2 gene. It is characterised by cortical circuit dysfunction that
affects nearly every aspect of a patient’s life. Understanding how the disease shapes
network structure and dynamics at early developmental stages may help us better
understand and, ultimately, modulate the progression of this disease. This study aimed
to determine the range and functional coordination of neuronal firing patterns and the
extent to which network dynamics can be controlled.

Using microelectrode arrays, I probed the electrical activity of cultured corti-
cal networks over multiple weeks. Using a novel spike detection method I developed
to capture spontaneous multiunit activity, I first characterised the network-wide co-
ordination of firing patterns using a measure of dynamical dimensionality called the
effective rank. Then, I quantified the extent to which networks realise their propen-
sity for forming functional subcommunities using relative effective rank. To deter-
mine the range of circuit dynamics and their controllability, I applied a control theory
framework to functional network architecture inferred from parallel spike trains. I
quantified the network’s dynamical repertoire using average and modal controllabil-
ity measures. Finally, I determined the extent to which network dynamics could be
controlled using the volume of the controllability ellipsoid.

I found that during healthy neurodevelopment, cortical circuits become in-
creasingly structured in a manner optimised to support a wide range of dynamics, and
this process is disrupted inMecp2-deficient networks. Wild type cultures showed low-
dimensional, interpretable neural code, and knockout cultures exhibited more desyn-
chronised dynamics. The state-space analysis indicated that healthy circuits were also
able to traverse larger surfaces of the energy landscape. Cultures heterozygous for
Mecp2 deletion displayed intermediate phenotypes. However, all genotypes were
controllable to a similar extent, suggesting that therapeutic modulation of network
function in RTT may be feasible.
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1
Introduction

1.1 Rescuing decline in cognitive function in Rett

syndrome
Rett syndrome (RTT) is a severe neurodevelopmental disorder and the most

common monogenic cause of intellectual disability in females (Heckman et al., 2014).
The hallmark of this condition is an apparent asymptomatic development until 6–18
months old, followed by the regression ofmotor and language skills resulting inmissed
developmental milestones (Einspieler & Marschik, 2019). As the disease progresses, it
affects nearly every aspect of a patient’s life, necessitating lifelong, round-the-clock
care. Currently, RTT remains without a cure. Modulating network function at cellular
scale is a promising avenue for improving cognitive function in RTT patients (Guy
et al., 2007; Castro et al., 2014). Hopefully, with new mechanism-based treatment
strategies, we will empower individuals with Rett syndrome to interact with their
families and improve their quality of life. Now, the discovery of such treatments
requires reliable disease models and developing new methods for studying them.

1.1.1 Disease models of Rett syndrome

The vast majority of RTT cases are caused by a loss-of-function mutation in the
X-linked methyl-CpG-binding protein 2 gene (MECP2, human; Mecp2, mouse) coding
for the transcriptional regulator MECP2 (Mecp2 in mouse). Since this discovery (Amir
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Figure 1.1: Mechanisms of pathogenesis of Rett syndrome. Loss of MeCP2 changes
gene expression (A), disrupts synaptic function (B), alters network development (C),
and leads to decline in cortical function in human disease (D).

et al., 1999), multiple mouse models of the disease have been generated (Guy et al.,
2001; Chen et al., 2001) which recapitulate physiological and behavioural phenotypes
as well as the developmental trajectories observed in human disease (Moretti, 2006;
Vashi & Justice, 2019). Additionally, cellular mechanisms underlying RTT pathology
have been observed in vitro in both the acute brain slices (Dani et al., 2005; Dani &
Nelson, 2009) and cell cultures (Baj et al., 2014).

Studying murine in vitro primary dissociated cortical cultures allows us to ob-
serve the earliest deficits in network function and how the disease alters the funda-
mental mechanisms driving network development at the cellular scale, and how these
changes impact the developmental trajectories. Moreover, such studies confer us with
more experimental freedom than when working with live mice and are cheaper, more
ethical, and faster than culturing human stem cells (Marchetto et al., 2010; Walsh &
Hochedlinger, 2010).

1.1.2 Rett syndrome as a model circuit disorder

RTT is a disorder of neuronal circuits (Shepherd & Katz, 2011; Goffin & Zhou,
2012; Kron et al., 2012). Early electrophysiological recordings from acute mouse cor-
tical slices suggested that RTT involves synapses and microcircuits primarily with
relative sparing of intrinsic neuronal firing properties (Dani et al., 2005). Indeed,
excitatory-inhibitory (E-I) imbalances and cortical hypoconnectivity have been later
found both in vitro and in vivo (Dani & Nelson, 2009; Wood & Shepherd, 2010; Du-
rand et al., 2012; Sceniak et al., 2016). The cellular mechanisms responsible for the
pathogenesis of RTT are shown in Figure 1.1.

However, besides the findings mentioned above, the deficits in functional con-
nectivity and neuronal network dynamics in RTT are poorly understood (Sit, 2018).
Further understanding of this disease will require the characterisation of these as-
pects of network development. This thesis will quantify the effective dimensionality
of developing cortical circuits and explore the links between network structure and
function using approaches from network control theory.
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1.2 Studying network dynamics at cellular scale
Determining the relationship between structure and function is a key challenge

in modern neuroscience. The last two decades have seen a rapid increase in concep-
tual frameworks aiming to address it (Ju & Bassett, 2020). Among these, particular
attention has been given to the study of neural networks via connectomic approaches.
Using concepts borrowed from graph theory, one can explore how different elements
(nodes) of the network interact with each other through functional or anatomical con-
nections (edges), and how these interactions give rise to neural function at whole-brain
(Schröter et al., 2015) and microcircuit scale, both in vivo and in vitro (Poli et al., 2015;
Schröter et al., 2017). Despite the widespread use and utility of these approaches, they
only capture snapshots of the network function without the temporal dimension in
which it exists. Attempts were made to circumvent this obstacle but were largely lim-
ited to sliding-window approaches (Sizemore & Bassett, 2018).

Network control theory offers a new perspective on functional brain networks,
enabling the modelling of the temporal evolution of network dynamics as a function
of its connectivity (Gu et al., 2015). In this study, I aim to characterise the behaviour of
neuronal networks (system) through the observations of spontaneous spiking activity
(states). I further define the state space as a collection of all states permissible by the
biophysical properties of neurons and the connections between them. I apply this
framework to neuronal networks in vitro.

During development, cultured neurons wire together, forming networks
(Downes et al., 2012; Chiappalone et al., 2019) which can be probed using electrophys-
iological recordings from microelectrode arrays (MEA). The recorded spontaneous
electrical activity can be used to infer functional connectivity (Cutts & Eglen,
2014; Poli et al., 2015) and to characterise the dimensionality of network dynamics
(Recanatesi et al., 2019).

1.2.1 Effective dimensionality of network dynamics

The observed repertoire of network activity patterns might span as many di-
mensions as there are neurons in it. However, the dynamics of the whole network are
different from the summed activity of individual components. Previous analyses of
neural activity using dimensionality reduction methods revealed that the underlying
dynamics can be described by a much lower number of latent (unobserved) dimen-
sions than the original data (Cunningham & Yu, 2014; Gao et al., 2017). These findings
are especially relevant for our understanding of brain function because neural net-
works also perform this kind of computations. During population coding, activities
from thousands of individual neurons are combined to robustly decode sensory infor-
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Figure 1.2: Control theory is concerned with finding optimal perturbation strate-
gies. In this study, I investigate whether one can steer a system from an arbitrary
initial state to a desired final state with input energy in finite time. In this diagram,
the considered system exists in a n = 4 dimensional state space (dimensions x1–x4).
This could represent a network of four neurons, with each dimension in state space
specifying the spiking activity of the corresponding neuron. Figure created by me in
TikZ.

mation and produce appropriate functional output (Rossi-Pool & Romo, 2019).
Dimensionality provides a measure of how coordinated the network-wide ac-

tivity is in terms of the number of dimensions in the state space necessary to explain
the observed firing patterns. Because the complexity of network dynamics is strongly
regulated by local connectivity motifs (Recanatesi et al., 2019), this framework allows
us to quantify the dynamical portrait of circuit computations in developing cortical
networks.

1.2.2 Exploring relationships between network structure

and dynamics using network control theory

The ultimate proof of our understanding of complex dynamical systems lies in
our ability to control them. Over the last century, a rich body of scientific literature has
grown to address this challenge, giving birth to the discipline of control engineering.
However, little of it has percolated to neuroscience (Kao & Hennequin, 2019).

The notion of control, as studied by control theory, conceptually agrees with
our everyday understanding of it. To controlmeans to exert influence in order to achieve
the desired goal. In the scope of control engineering, this means steering a system from
one state to another with energy delivered through a set of inputs (Fig. 1.2). Applied
to neural networks, we can modulate a selected set of nodes using pharmacological,
optogenetic or electrical interventions (either excitatory or inhibitory).

Analysis of neuronal networks in the context of control theory may be crucial
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to understanding how neural dynamics relate to brain function in health and disease.
Targeting network dynamics in therapeutic interventions canmaximise beneficial out-
comes for patients. Examples include automatic maintenance of anaesthesia (Ching
et al., 2013), optimizing deep brain stimulation in Parkinson’s disease (Johnson et al.,
2016) and seizure suppression in epilepsy (Berenyi et al., 2012; Jobst et al., 2017). Con-
trol engineering also lies at the heart of the rapidly developing field of neuroprosthet-
ics and brain-machine interfaces (Tsu et al., 2015). However, this framework can also
be applied to further our understanding of the cellular basis of cognitive disorders,
including Rett syndrome and Autism Spectrum Disorders (Sit, 2018).

1.3 Aims
In this study, I aim to:

1. Characterise the relationship between network function and structure inferred
from the observed neuronal spike trains across development using dimension-
ality analysis.

2. Investigate mechanisms underlying the emergence of cortical network dynam-
ics using network control theory.

3. Elucidate the effects of developmental age and Mecp2 deficiency on the dynam-
ical properties of in vitro neuronal networks.

4. Determine whether network dynamics framework is suitable for studying in
vitro model of neurodevelopment in RTT.

5



2
Methods

2.1 Animals used in the study

Figure 2.1: Female C57BL mice heterozygous for Mecp2 deletion (Mecp2+/–) were
bred with wild type male mice (Mecp2+/y), yielding equal genotype distribution in the
offspring. WT: wild type, HET: heterozygous, KO: Mecp2 knockout. Figure created in
BioRender by me.

All animals were maintained and bred by the personnel of the on-site animal
facility. Female C57BL mice heterozygous (HET) for Mecp2 deletion (Mecp2+/–) were
bred with wild type (WT) male mice (Mecp2+/y) (Fig. 2.1). This yielded in an ap-
proximate 1:1:1:1 offspring genotype spread as shown in Table 2.1. Genotyping was
performed by Transnetyx on postmortem tissue.
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Genotype Phenotype Sex Abundance

Mecp2 +/y WT Male 25%

Mecp2 +/+ WT Female 25%

Mecp2 +/– HET Female 25%

Mecp2 –/y KO Male 25%

Table 2.1: Approximate distribution of offspring genotypes.

2.2 Microelectrode array preparations
Microelectrode array (MEA) chips (60MEA200/30iR-ITO-gr, Multi Chan-

nel Systems, Reutlingen, Germany) were prepared using a published protocol
(Charlesworth et al., 2015). MEAs were treated with 0.5 mg×ml-1 proteinase K (Sigma
number: SAE0009-25MG), incubated for 24–48 hours and then rinsed with sterile
distilled water (LifeTechnologies number: 15230071) to remove remaining cellular
debris. MEAs were next sterilised in an autoclave. Sterilised MEA grids were treated
with 0.01% poly-L-lysine (Sigma number: P4832) and subsequently washed with
phosphate-buffered saline (PBS, LifeTechnologies number: 14190094) three times
before coating them with laminin (Sigma number: L2020-1MG) 24–48 hours before
the initiation of cell culture. Alexander Dunn performed the entire procedure.

2.3 Initiation and maintenance of primary disso-

ciated cortical cultures
Newborn mouse pups were sacrificed in accordance with Home Office ap-

proved procedures at either postnatal day (P) 0 or 1. Cerebral cortices were dissected
in ice-cold PBS (Life Technologies number: 14190094) and transferred under sterile
conditions to a 1:1 solution of papain (Sigma number: P5306-25 mg) and PBS for chem-
ical dissociation in a 37℃ water bath for 25 minutes. The papain reaction was halted
by adding 4% Foetal Bovine Serum in Neurobasal Media (LifeTechnologies number:
21103049) with B27 supplement (NB-B27, Life technologies number 17504044. Next,
cells were manually dissociated and the obtained cell suspension was centrifuged at
0.4 rcf for 10 minutes. The supernatant was aspirated, and the cell pellets were resus-
pended in 350 μL warm (37℃) NB-B27 media and manually dissociated again. Cell
concentration was determined using a haemocytometer in order to calculate the vol-
ume of cell suspension required to plate 2× 105 cells onto each MEA grid. Each MEA
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Figure 2.2: Photographs of cortical cultures developing on the MEA grid. (A) A
sample wild type culture at DIV 7. The grid coverage is satisfactory and some axons
are visible. (B) The same culture at DIV 21. Note the conspicuous network formation
and growth of the axon tracts. Photographs courtesy of Alexander Dunn. Figure
created by me in TikZ.

grid contained 600 μL NB-B27 media containing 1.5 μL (0.25%) L-glutamine (LifeTech-
nologies number: 25030024) at 37℃. Cells were incubated at 37℃ and 5% CO2/95%
air. Three times per week, starting from 3rd day in vitro (DIV3), one third (200 μL)
of media was removed and replaced with 0.25% L-glutamine (200 mM) in NB-B27 so-
lution. Each MEA was fitted with a lid to prevent evaporation and to maintain ster-
ile conditions over several weeks (Potter & DeMarse, 2001). Cultures were inspected
weekly to ensure no perturbation or death of cells on the grid, and photos of cultures
on MEAs (Fig. 2.2) were taken using a microscope setup with the Wasabi software
(Hamamatsu software). Cultures with fewer than one fifth of electrodes covered by
cells were discarded. Cell culture initiation and maintenance have been carried out by
Alexander Dunn with assistance from other lab members.

2.4 Electrophysiological recordings using micro-

electrode arrays
TheMEA chip is 2×2 mm and comprises 60 electrodes arranged in an 8×8 grid

(without corners). As shown in Figure 2.3, each electrode is 30 μm in diameter, and
the electrodes are spaced 200 μm apart. Fifty nine electrodes are used for recordings.
One is used as a reference (electrode in column 1, row 5 of the MEA). Spontaneous
activity from cell cultures growing on the MEA grid was recorded at 25 kHz sam-
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Figure 2.3: Photograph of a cell culture growing on microelectrode array (MEA).
MEA is 2 × 2 mm and comprises 60 electrodes arranged in an 8 × 8 grid (without
corners). Each electrode (black circle) is 30 μm in diameter, and the electrodes are
spaced 200 μm apart. The effective recording range is up to 45 μm from the centre of
the electrode. Figure created by me in TikZ.

pling frequency using MEA2100 amplifier and MC Rack software (Multi Channel
Systems). Before each recording, the voltage readout was checked for noise levels.
Channels with voltage fluctuations exceeding 50 μV were grounded (the signal vector
set to that of the reference channel) using MEA Select software (Multi Channel
Systems). If this occurred over more than 20% of electrodes, the recording was ex-
cluded from further analysis. Initial recordings, started at the 7th day in vitro (DIV7)
lasted 2 minutes and were followed by weekly 12-minute recordings for 5 weeks (up
to DIV35). Temperature of 37℃ was maintained throughout recordings using TC01
temperature controller and the TCX-Control software (Multi Channel Systems).
All of these procedures were performed by Alexander Dunn under full blinding to
culture genotypes.

File output from MC Rack was converted to binary data format (.raw) us-
ing MC_DataTool (Multi Channel Systems) and finally to MATLAB data format
(.mat) using custom MATLAB scripts. Before pre-processing, voltage traces were
plotted and again inspected for possible artifacts that might have originated from dam-
aged electrodes or poor contact between electrodes and amplifier pins. The recording
procedure has been summarised in Figure 2.4.
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Figure 2.4: MEA recording setup. For recording, MEA chip (A) is placed in the
headstage (B). Voltage fluctuations originating from neuronal activity or due to noise
are detected and sent to the amplifier (C). Amplified analog signal is digitized and
sent to the computer where it can be visualised using the MC_Rack software. At
this step, channels with excessive baseline voltage fluctuations can be grounded (D).
Collected data is then converted to a MATLAB-readable format for analysis. Figure
created by me in BioRender.

2.5 Pharmacology
For the validation of detected spikes, three DIV50 cultures have been recorded

for three minutes as a baseline. After each recording, half of the media in the MEA
well was replaced with 1 μM tetrodotoxin (TTX) in NB-B27. Cells were incubated with
TTX for five minutes before a subsequent six-minute recording.

2.6 Data pre-processing
Filtering is a crucial signal processing step that ensures the exclusion of ir-

relevant background activity and noise. Noise may originate from the cell culture
itself (local field potentials and other subthreshold electrical events, heat dissipation),
recording electrodes (1/f noise), amplifiers and other electronic instruments, external
electrostatic and electromagnetic interference (50-60 Hz mains hum), mechanical vi-
brations, and the data digitization process (Sherman-Gold, 1993). In this investigation,
I applied a 3rd order Butterworth band-pass filter with cutoffs at 600 Hz and 8,000 Hz
for the low- and high-pass respectively (Schröter et al., 2015) (Fig. 2.5).
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Figure 2.5: Voltage readout from MEA chip. (A) Voltage traces for each of the elec-
trodes arranged according to their physical position on the MEA grid. Dotted rectan-
gles represent examples of grounded electrodes. Circle shows the reference electrode
at its constant position 15 (column 1, row 5). Unmarked traces correspond to record-
ing electrodes. (B) Raw voltage trace. (C) Same trace as in (B) after filtering with 3rd
order Butterworth bandpass filter with cutoffs at 600 Hz and 8,000 Hz for low- and
high-pass respectively. Figure created by me in TikZ.

2.7 Spike detection
Neural information is encoded and processed as sequences of action potentials

called spike trains (Gabbiani & Metzner, 1999). Capturing these signals is paramount
for our understanding of neuronal function. Spike detection is a process whereby
extracellular action potentials are extracted from electrophysiological recordings also
containing irrelevant background neuronal activity and noise. In this investigation, I
have developed a custom spike detection method in collaboration with my colleagues.
This method has been tailored for the detection of multi-unit activity and relies on
continuous wavelet transform (Nenadic & Burdick, 2004) with data-driven template
selection. Benchmarking has revealed that it is more accurate than the best published
method (Lieb et al., 2017) by at least 8% (Appendix A).

A graphical summary of the experimental methods can be found in Figure 2.6.
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Figure 2.6: Experimental methods summary. (A) Entire cerebral cortices were ex-
tracted from newborn mouse pups, dissociated, and plated directly onto the MEA
grid. (B) Cell culture developing on the MEA grid. The aim of this study is to ex-
plore the functional characteristics of the networks developing in these cultures. (C)
Average spike waveforms from a sample MEA recording. Sixty electrodes (59 record-
ing and one reference) were used in the current investigation. Some of the recording
electrodes had to be grounded due to excessive voltage fluctuations caused by noise.
Neuronal action potentials were extracted in the spike detection step and used to
quantify the development of cortical networks.

2.8 Inferring network structure from sponta-

neous neuronal activity
I have used the spike trains identified from simultaneous recordings of the

spontaneous electrical activity across the network to infer the functional connections
between neurons. Pairwise correlations inmulti-unit activity between electrodes were
quantified using spike time tiling coefficient (STTC; Cutts & Eglen, 2014). I have
adapted the original code in C provided by the authors, and used the MEX framework
to call it from MATLAB, improving computational time by 10-fold compared to a pure
MATLAB implementation. I made the code available at https://github.com/
jeremi-chabros/sttc.

2.9 Statistical analysis
Statistical analysis was performed in MATLAB (R2020b, 9.9.0.1467703, The

MathWorks Inc.) and statistical power calculations were done using the G*Power
software (Faul et al., 2009). Data were tested for normal distribution quantitatively us-
ing the Anderson-Darling test and qualitatively using quantile-quantile plots. Obvious
outliers were removed based on the Cook’s distance (Altman & Krzywinski, 2016).

Where data was normally distributed, I compared developmental trajectories
of different genotypes using repeated measures analysis of variance (rmANOVA) with
the assumption of compound symmetry (sphericity). I used Mauchly’s test of spheric-
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ity to determine if this assumption was violated. If so, I employed the Greenhouse-
Geisser Correction, producing correction factor ϵ. Degrees of freedom were then ad-
justed by multiplying the original values by ϵ. For comparisons between specific ages,
I used theWelch’s unequal variances t-test. Effect sizes were calculated using Hedges’
g for independent samples (Hentschke, 2021) with a small sample bias correction as
per Hedges (Hedges, 1981).

Where data was not normally distributed, I used Mann Whitney U test for
pairwise comparisons and Friedman’s nonparametric repeated measures test for com-
paring developmental trajectories and genotype effects. Effect sizes were calculated
using Mann Whitney U statistic (Conroy, 2012).

c = U
N1 × N2

where c is the effect size, U is the Mann-Whitney U statistic, and N1 and N2 are the
corresponding sample sizes.

2.10 Data analysis and visualisation

MEA
recording

Spike
detection

Functional
connectivity

Network
control theory

Age & genotype
effects of Mecp2

deficiency

Dimensionality
analysis

Figure 2.7: A diagram summarizing the data analysis pipeline.

All data analysis was performed using MATLAB and the pipeline is sum-
marised in Figure 2.7. I created all the figures using MATLAB or LATEXpackage TikZ.
I produced graphics and diagrams in BioRender. I typeset my thesis in LATEXusing the
XƎTEXengine. Fonts, colours, and style in this thesis were chosen to be appropriate for
people with dyslexia or colourblindness.

To identify the analysis methods I apply in this study, I first evaluated the spike
detection methods used by our group. Then, I searched the literature for other pub-
lished algorithms. To improve the performance of available methods, I developed and
benchmarked a novel spike detection algorithm. Next, I used the spike trains to char-
acterise the functional connectivity of developing cortical networks and calculate the

13



dynamical dimensionality of these networks. Then, I have quantified the control pro-
files of cortical circuits using energy-related controllability metrics, including average
and modal controllability and the controllability ellipsoid. Data analysis and visuali-
sation can be reproduced using scripts publicly available on my GitHub:
https://github.com/jeremi-chabros
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3
Effective dimensionality of
network dynamics

3.1 Discrete vs. continuous dimensionality
Many methods have been employed to characterise the dimensionality of neu-

ral network dynamics. Some examples include principal component analysis (PCA),
independent component analysis (ICA), linear discriminant analysis (LDA), and factor
analysis (FA) (Cunningham & Yu, 2014; Sadiq et al., 2021). However, all these methods
quantify the number of dimensions required to explain a specified amount of observed
variability based on an arbitrary threshold (e.g. obtained with the elbow method) and
in terms of discrete values. Using integers may blur the potential differences between
experimental conditions, such as culture age or genotype. In this study, I have cho-
sen the effective rank to address these issues as it is agnostic to any thresholding and
provides a continuous measure of the network’s dynamical dimensionality.

3.2 Effective rank
Effective rank is a measure of effective dimensionality (Roy & Vetterli, 2007).

Since its conception, it has been applied to neuronal networks in a single study in
which the effective rank has been calculated from the correlation matrix of neural
activity (Sit, 2018). In my current study, I have taken a different approach whereby I
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calculated the effective rank directly from the spike trains to achieve a better temporal
resolution to quantify network dynamics. Below, I outline the intuition behind this
measure.

In linear algebra, a rank of a matrix is an integer value that quantifies the maxi-
mal number of linearly independent dimensions (rows or columns). If all of the matrix
dimensions are independent (in other words, where no coupling between variables
exists), the rank of such matrix will be equal to the lesser of the number of rows and
columns. Conversely, if all of the variables are coupled, the rank will be one.

In respect to electrophysiological recordings from neural networks, a column
could represent a node’s activity across the recording duration. Each row would then
summarise the state of all the nodes at a given time bin. In this scope, the rank will
equally quantify the number of unique patterns of activity, and the number of di-
mensions in the state space needed to describe the variability in the observed neural
activity. Because each node’s activity might participate in different temporal motifs
to a variable extent, the whole network’s activity will travel through the dimensions
of the state space continuously, rather than in saltatory jumps from one dimension to
another. Therefore, effective rank is a more accurate measure of dimensionality than
the classical interpretation using rank.

A B C

Figure 3.1: Graphical representation of network dimensionality. (A) A network with
completely decoupled dynamics (complete independence). (B) A network with par-
tially coupled dynamics (subgroup independence). (A) A network with completely
coupled dynamics (complete dependence). Each colour represents a unique pattern
of activity and dotted lines represent synchronised subgroups. The connections be-
tween nodes represent coupling of their dynamics (i.e. shared patterns of activity).

As a demonstration, let us consider a sample network of nine neurons (Fig. 3.1)
whereby we assign a different colour to each unique pattern of activity (dimension in
state space). For the purpose of illustration, let us disregard the fact that some colours
were generated by a mixture of primary colours, and assume that they are all primary
colours (unique and not able to be generated by mixing colours) 1. In case where the

1Notice that we will obtain a more realistic, although much less interpretable, picture of network

16



dynamics of each node in a network are independent (decoupled) from those of other
nodes, the effective rank will be equal to the network size (erank = 9)(Fig. 3.1A). If, due
to functional connectivity, some nodes share the same pattern of activity, it can be used
to distinguish them from other subgroups with independent activity (Fig. 3.1B). Thus,
the effective rank will be equal to the number of subgroups (erank = 3). Finally, if all
of the nodes in a network are synchronised, the effective rank will be one (Fig. 3.1C).

3.3 Mecp2 deficiency leads to increased dimen-

sionality of network dynamics
To characterise the development of functional subcommunities sharing pat-

terns of activity in the neuronal networks, I applied effective rank to the MEA record-
ings from Mecp2-wildtype (WT, n = 17), heterozygous (HET, n = 15) and knock-out
(KO, n = 15) cortical cultures. Based on previous results (Perin et al., 2011; Sit, 2018), I
hypothesised that during development the effective dimensionality of cortical circuits
will decrease following the emergence of synchronised network activity, and that this
process will be disrupted in HET and KO cultures.

Compared genotypes Differencea Confidence interval p

HET vs KO −3.43 -6.59 to -0.28 0.03 *

HET vs WT 0.18 -2.97 to 3.34 1.00

KO vs WT 3.62 0.46 to 6.77 0.02 *

Table 3.1: Table summarising statistical differences in effective rank between geno-
types (Friedman repeated measures test with multiple comparisons). * p < 0.05
a Difference in average column rank.

I found that KO cultures had an overall higher effective rank than both WT
and HET cultures, which themselves were not found to be different from each other
(Tab. 3.1). These results might indicate that over the first five weeks of development,
WT and HET cultures had an overall better capacity for network synchronisation than
KO cultures. The high dimensionality of Mecp2 deficient cultures suggests develop-
mental delay due to constraints in forming meaningful connections or subcommuni-
ties within the larger network. Alternatively, these cultures might compensate for
the deficits in subgroup dependency with a more flexible dynamic repertoire, promot-
ing general computations (Recanatesi et al., 2019). The observed genotype differences
dynamics when we lift this assumption. Primary colours will represent the principal directions in
the state space (independent temporal motifs). Mixing the colours will mean that each node might
participate in each of these patterns to a variable extent. The original whole network activity could
then be reconstructed by summing together each primary colour’s contributions to the different hues.
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might reflect a dose-effect relationship between the expression of Mecp2 and the ef-
fective dimensionality of network dynamics.
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Figure 3.2: Box plot (median, interquartile range, minimum and maximum) of age
and genotype effects on effective rank. DIV – days in vitro. Genotypes: WT – wild
type, HET – heterozygous, KO – Mecp2 knockout. * p < 0.05, ** p < 0.01.

Over the whole duration of the study, I observed significantly lower network
dimensionality in WT cultures when compared to Mecp2-knockouts (Fig. 3.2). Simi-
larly, the effective dimensionality of HET cultures was lower than that of KO cultures,
but I found no statistically significant differences between the WT and HET cultures.
All of the pairwise comparisons achieved effect sizes ranging between 1.17 and 1.33,
implicating sufficient power (at 1 – β = 0.8 threshold) of the statistically significant
results (Tab. 3.2).

At DIV14, WT cultures have already achieved substantial subgroup synchro-
nisation levels that were maintained over the duration of the study. At the same
developmental age, the HET cultures had a lower dimensionality than KO cultures,
but the values were narrowly distributed. The variability between different HET cul-
tures increased over development, suggesting a developmental trajectory whereby
some cultures achieved more meaningful activity patterns than others, which could
be explained by the random X-inactivation and therefore variable Mecp2 expression.
Despite significant impairments in the formation of communities and local processing
(as compared to HET and WT cultures), the effective dimensionality of some Mecp2
deficient networks has decreased during development. This could mean that there ex-
ists a combination of function and dysfunction in cortical circuits in RTT, and that
their development and functional maturation is delayed. Interestingly, although the
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Compared genotypes Age (DIV) U z p Effect size a

WT vs KO

14 331.00 3.13 0.001 *** 1.30

21 325.00 2.91 0.002 ** 1.27

28 310.00 2.34 0.009 ** 1.22

35 299.00 1.93 0.027 * 1.17

WT vs HET

14 262.00 0.53 0.299 n/a

21 237.00 −0.42 0.661 n/a

28 254.00 0.23 0.410 n/a

35 207.00 −1.55 0.939 n/a

HET vs KO

14 299.00 2.74 0.003 ** 1.33

21 300.00 2.78 0.003 ** 1.33

28 283.00 2.07 0.019 * 1.26

35 297.00 2.65 0.004 ** 1.32

Table 3.2: Table summarising the statistical results of pairwise comparisons (two-
tailed Mann-Whitney U test) between genotypes in respect to effective rank. * p <
0.05, ** p < 0.01.
a Effect sizes reported only for statistically significant differences.

theoretic maximum value of effective rank in current investigation was 59, even KO
circuits at earliest developmental stages (DIV14) have shown some levels of network
synchronization, indicating that functional circuits emerge early in development, even
in RTT disease model.

However, these findings might be potentially biased by variable culture growth
during early development and differences in functional network sizes between geno-
types. Therefore, a modification to this method was required.
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3.4 Relative effective rank reveals changes in dy-

namical dimensionality due to network size
Relative effective rank is the effective rank normalised towards network size. I

define network size as the number of active nodes in the network (those with a spiking
frequency exceeding 0.5 Hz). This measure of dimensionality quantifies the extent to
which the propensity for subcommunity pattern synchronisation, as quantified by the
effective rank, is realised by the network. This measure is bounded by ⎛

⎝0, 1
]
, meaning

complete synchronisation or complete independence of firing patterns, respectively.

Compared genotypes Differencea Confidence interval p

HET vs KO −3.35 -6.51 to -0.19 0.03 *

HET vs WT 0.00 -3.15 to 3.15 1.00

KO vs WT 3.35 0.20 to 6.52 0.03 *

Table 3.3: Table summarising statistical differences in relative effective rank between
genotypes (Friedman repeated measures test with multiple comparisons). * p < 0.05
a Difference in average column rank.

I have noted similar trends with relative effective rank as with its non-
normalized counterpart (Fig. 3.3, Tab. 3.3, Tab. 3.4). However, I have observed a notable
change in respect to the dimensionality of WT and KO cultures at DIV35, where the
previously significant difference between cultures has disappeared after accounting
for network size. Additionally, the finding that the highest values of relative effective
rank approached 0.9 and not 1 suggests that even relatively dysfunctional cultures
(compared to WT) exhibited some levels of synchronisation already at early develop-
mental stages.
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Figure 3.3: Box plot (median, interquartile range, minimum and maximum) of age
and genotype effects on relative effective rank. DIV – days in vitro. Genotypes: WT
– wild type, HET – heterozygous, KO – Mecp2 knockout. * p < 0.05, ** p < 0.01.

Compared genotypes Age (DIV) U z p Effect size a

WT vs KO

14 312.00 2.42 0.008 ** 1.22

21 316.00 2.57 0.005 ** 1.24

28 300.00 1.96 0.025 * 1.22

35 288.00 1.51 0.065 n/a

WT vs HET

14 240.00 −0.30 0.619 n/a

21 239.00 −0.34 0.633 n/a

28 255.00 0.26 0.396 n/a

35 206.00 −1.59 0.944 n/a

HET vs KO

14 298.00 2.70 0.003 ** 1.32

21 300.00 2.78 0.003 ** 1.33

28 281.00 1.99 0.023 * 1.25

35 296.00 2.61 0.004 ** 1.32

Table 3.4: Table summarising the statistical results of pairwise comparisons (two-
tailed Mann-Whitney U test) between genotypes in respect to relative effective rank.
* p < 0.05, ** p < 0.01.
a Effect sizes reported only for statistically significant differences.
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4
Developing cortical networks:
control theory perspective

4.1 Understanding network controllability in

RTT
The wiring of neural networks during healthy brain development increasingly

supports coordinated control of neural activity (Tang et al., 2017). Circuit hypocon-
nectivity patterns observed in RTT suggest that the disruption of this process might
lead to deficits in cognitive control manifesting in intellectual disability. However,
the mechanisms and extent to which these changes affect developing cortical circuits’
dynamics and control profiles remain unknown (Sit, 2018).

How do control profiles of cortical networks change over development? Are
healthy and diseased networks different from each other? How easily can we steer
the network from one arbitrary state to another? In other words, to what extent is
the network controllable? What types of states, as defined by the controllability met-
rics, can networks reach? Which nodes are the most influential in driving network’s
dynamics? What is the cost of control?

Answering these questions may help us better understand circuit pathology
in RTT and rescue the decline in cognitive function through developing focused,
mechanism-based control strategies for effective pharmacological modulation (Scara-
muzza et al., 2021) or deep brain stimulation (Hao et al., 2015).
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4.2 Modelling network dynamics using control

theory
To investigate the developmental trajectories of cortical networks, I searched

the neuroscience, mathematics, engineering, and computer science literature for
energy-related controllability metrics. This class of metrics deals with the amount
of input energy required to steer a system from an initial state to a desired final state
in finite time, based on network’s topology and dynamics. I approximated the func-
tional architecture of the networks using the spike time tiling coefficient (STTC; Cutts
& Eglen, 2014), excluding self-loops. To model network dynamics, I assume that

• We are sampling the continuous behaviour of a network in discrete time steps
(here, at 25 kHz frequency),

• The architecture of the network is constant throughout the electrophysiological
recording (here, 12 minutes),

• The network exhibits linear dynamics (or its dynamics can be linearised around
fixed point),

• We are only able to control a single node at a time.

In control engineering, this set of assumptions is called the discrete-time linear
time-invariant (LTI) system approach (for mathematical formulations, see Appendix).
In this report, I first apply this framework to determine the role of each node in control-
ling the network dynamics using average and modal controllability measures. Then, I
identify the extent to which the whole network is controllable using a controllability
ellipsoid.

4.3 Nodal controllability metrics
Nodal controllability metrics describe which nodes in the network are most

influential in constraining or facilitating state trajectories. Each of these diagnostics
captures a different goal (Karrer et al., 2020). Together, they answer two questions: 1)
which nodes are the most influential in driving the network’s dynamics and 2) what
types of states can be reached by controlling these nodes. In this study, I quantify the
control profile of the entire network by averaging the controllability values across all
nodes.

In our model, input energy is delivered as an impulse to a single node at a time.
Thence, the control energy is transferred across edges to influence other nodes in the
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Figure 4.1: Functional architecture determines the network’s responses to input en-
ergy. (A) A sample network of nine neurons with control input (lightning bolt sym-
bol) to a single node (pink circle). The input energy is transferred across connections
(yellow arrows) to influence other neurons (e.g., blue neuron) in the network. Edge
weights depict the strength of functional connectivity as determined by STTC. (B)
Input energy (lightning bolt symbol) delivered as an impulse (top) dissipates across
connections with a time constant proportional to their strength. The pink curve illus-
trates the response of the pink neuron in (A), and the blue line shows the response of
the blue neuron. Note the time lag and attenuation. Figure created byme in TikZfrom
synthetic data purely for visualisation purposes.

network (Fig. 4.1A). The input energy passing through connections attenuates with a
time constant directly proportional to edge weights. In other words, weaker connec-
tions attenuate more (Fig. 4.1B). Because summed responses of each node determine
the network’s behaviour, the nodal controllability metrics allow us to identify nodes
with the most influence over network dynamics.

The impairment of motor and cognitive function in RTT suggests that the vol-
ume of the easily reachable subspace might be decreased or that the state space is
skewed towards difficult-to-reach states (Fig. 4.2). Such a finding would also sup-
port the lower flexibility in network dynamics thought to underlie autistic symptoms
(D’Cruz et al., 2013) experienced by approximately half of the patients affected by RTT
(Wulffaert et al., 2009). Because mosaic expression of MECP2 has differential effects
on different cells and cell populations, identifying the most controllable nodes might
help inform further research and target therapeutic modulation, thus reducing poten-
tial adverse effects on the rest of the network.

4.3.1 Average controllability

Average controllability identifies nodes that, on average, can steer the system
between states with little effort (input energy). The states in consideration are all states

24



Low

High

En
er
gy

Network

Distant state

Nearby state

Figure 4.2: Controllability in a three-dimensional energy landscape. Modal con-
trollers are capable of driving the network to distant, difficult-to-reach states, whereas
average controllers are better suited to facilitate state transitions towards nearby,
easily-reachable states. There are multiple alternative paths to reaching the desired
state (not shown). Figure created by me in TikZfrom synthetic data purely for visu-
alisation purposes.

permissible by the network architecture. In an energy landscape (Fig. 4.2), low-energy
states vastly outnumber high-energy states (Gu et al., 2015). Therefore, we can also use
the average controllability to quantify each node’s ability to drive the network towards
easily reachable states (those nearby the current state in the state space). The higher
the average controllability, the more capable a node is in driving network dynamics
towards nearby states.

Developing cortical circuits support a wide range of dynamics that can

be effectively controlled

In this study, I used average controllability measure to investigate the dynam-
ical repertoire of developing cortical circuits in WT (n = 17), HET (n = 15), and KO
(n = 15) cell cultures. An overall increase in average controllability was expected to
reflect the increase in functional connectivity over development (Tang et al., 2017) and
to be constrained by the edge weight distributions (Pasqualetti & Zampieri, 2014).

I found that WT cultures were on average more controllable than KO, but not
HET cultures. Indeed, I also observed no significant overall differences between HET
and KO cultures. Together, these results suggest thatWT networks are able to traverse
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Compared genotypes Differencea Confidence interval p

HET vs KO 2.63 -0.52 to 5.79 0.13

HET vs WT −3.94 -0.78 to 2.37 1.00

KO vs WT −6.57 -3.42 to -0.26 0.03 *

Table 4.1: Table summarising statistical differences in average controllability be-
tween genotypes (Friedman repeated measures test with multiple comparisons). *
p < 0.05
a Difference in average column rank.

vast surfaces of the energy landscape, and that this ability is disrupted to an extent
proportional to Mecp2 deficiency (Tab. 4.1).
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Figure 4.3: Box plot (median, interquartile range, minimum and maximum) of age
and genotype effects on average controllability. DIV – days in vitro. Genotypes: WT
– wild type, HET – heterozygous, KO – Mecp2 knockout. * p < 0.05, ** p < 0.01.

At DIV14, all genotypes were controllable to a similar extent, with only sig-
nificant difference between HET and KO. Starting from DIV21, WT cultures had sig-
nificantly higher average controllability values than KOs. During development, there
were no differences between WT and HET cultures. Interestingly, the controllability
of WT and KO cultures increased with time, but HET cultures remained at a steady
level throughout the study (Fig. 4.3, Tab. 4.2). All significant results reached large
effect sizes (1.30 to 1.39), yielding statistical power above the specified threshold of
0.8.
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Compared genotypes Age (DIV) U z p Effect size a

WT vs KO

14 106.00 −1.57 0.058 n/a

21 93.00 −2.37 0.009 ** 1.39

28 102.00 −1.82 0.035 * 1.32

35 98.00 −2.06 0.019 * 1.35

WT vs HET

14 142.00 0.65 0.741 n/a

21 136.00 0.28 0.609 n/a

28 112.00 −1.20 0.115 n/a

35 133.00 0.09 0.537 n/a

HET vs KO

14 96.00 −1.97 0.024 * 1.30

21 86.00 −2.63 0.004 ** 1.38

28 118.50 −0.49 0.311 n/a

35 95.50 −2.00 0.023 * 1.30

Table 4.2: Table summarising the statistical results of pairwise comparisons (two-
tailed Mann-Whitney U test) between genotypes in respect to average controllability.
* p < 0.05, ** p < 0.01.
a Effect sizes reported only for statistically significant differences.

These findings suggest that already at early developmental stages, cortical cir-
cuits become increasingly structured to support a wide range of state transitions and
that the loss of Mecp2 disrupts this dynamical capacity. However, it is unclear whether
these deficits originate in an overall compression of the reachable subspace or in the
energy landscape skewed towards difficult-to-reach states. To answer this question, I
used modal controllability.
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4.3.2 Modal controllability

Modal controllability quantifies the extent to which a node can drive the net-
work towards difficult-to-reach states (those distant in the state space). The energy-
based interpretation of this measure defines the difficult-to-reach states as those that
require substantial input energy (Fig. 4.2). I outline the complementary mechanistic
explanation below.

We can describe the network’s activity as a weighted sum of specific patterns
of activity calledmodes (eigenvectors) that define the directions of the temporal evolu-
tion of the system’s dynamics in the state space. Corresponding weights (eigenvalues)
specify the amplification or attenuation of the system’s dynamics in these directions.
Provided inputs that control these modes, one can steer the system towards any pos-
sible state. An extension of the Popov–Belevitch–Hautus (PBH) test of controllability
states that if the weight corresponding to a given mode is small, then this mode is
poorly controllable from a given input node. Modal controllability then quantifies the
node’s ability to control all modes of the network. Generating a precisely structured
network activity pattern required for a difficult task requires robust control over mul-
tiple modes. Therefore, nodes with high modal controllability are better suited to drive
the network towards difficult-to-reach states.

Mecp2-deficient networks are better at reaching difficult-to-reach

states

Based on previous reports of negative correlation between average and modal
controllability (Gu et al., 2015) and that modal controllability decreases over healthy
brain development (Tang et al., 2017), I predicted that this measure in cortical circuits
would decrease over time.

Compared genotypes Differencea Confidence interval p

HET vs KO −5.22 -2.07 to 1.08 0.35

HET vs WT −1.66 1.49 to 4.64 0.77

KO vs WT 0.41 -3.56 to 6.71 0.02 *

Table 4.3: Table summarising statistical differences in modal controllability between
genotypes (Friedman repeated measures test with multiple comparisons). * p < 0.05
a Difference in average column rank.

To test this hypothesis, I have applied modal controllability to functional net-
works forming in WT (n = 17), HET (n = 15), and KO (n = 15) developing corti-
cal cultures. I found that KO cultures were better suited for transitioning towards
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difficult-to-reach states than WT networks. However, I observed no overall difference
between KO and HET, or WT and HET cultures (Tab. ⁇). These results suggest that
the dynamical repertoire of Mecp2-null networks is skewed towards difficult-to-reach
states.
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Figure 4.4: Box plot (median, interquartile range, minimum and maximum) of age
and genotype effects on modal controllability. DIV – days in vitro. Genotypes: WT –
wild type, HET – heterozygous, KO – Mecp2 knockout. * p < 0.05, ** p < 0.01.

Next, I compared the three genotypes at different developmental stages
(Tab. 4.4). I observed that WT cultures were different from KO cultures already
at DIV14 and that this continued throughout the study. HET cultures at early
developmental age (DIV14) were similar to KO cultures, but during development,
they developed lower modal controllability, albeit with some variability (Fig. 4.4). The
most notable differences were noted at DIV21, suggesting that significant refinement
of functional architecture might happen at this developmental stage. There were no
clear developmental trajectories in modal controllability. The statistically significant
results have reached the 0.8 statistical power threshold.
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Compared genotypes Age (DIV) U z p Effect size a

WT vs KO

14 230.00 −1.89 0.030 * 1.17

21 203.00 −2.91 0.002 ** 1.27

28 223.00 −2.15 0.016 * 1.20

35 223.00 −2.25 0.016 * 1.20

WT vs HET

14 276.00 1.10 0.863 n/a

21 246.00 −0.04 0.485 n/a

28 293.00 1.74 0.959 n/a

35 248.00 0.04 0.515 n/a

HET vs KO

14 205.00 −1.12 0.131 n/a

21 161.00 −2.94 0.002 ** 1.35

28 214.50 −0.73 0.234 n/a

35 191.00 −1.70 0.044 * 1.22

Table 4.4: Table summarising the statistical results of pairwise comparisons (two-
tailed Mann-Whitney U test) between genotypes in respect to modal controllability.
* p < 0.05, ** p < 0.01.
a Effect sizes reported only for statistically significant differences.

4.4 Global controllability metrics
Despite providing intuition for controller placement, nodal controllability met-

rics do not characterise the control profile of the entire network. In other words, they
do not answer how complex (energetically costly) it is to drive the network between
states irrespective of the choice of inputs. This issue is relevant in the scope of cor-
tical circuits in RTT because it will answer how feasible therapeutic modulation will
be. Global controllability metrics were developed to address this issue and provide a
more general description of network controllability. In this study, I have focused on
controllability ellipsoid (Bainum & Xing, 1996).

4.4.1 Controllability ellipsoid

Controllability (energy) ellipsoid is a convenient geometrical representation of
the system’s controllability matrix (Gramian) (Summers et al., 2016). It encloses the
controllable subspace and specifies the directions in the state space along which the
system can be driven the furthest with a unit of input energy to any node (Fig. 4.5).

Because, to my knowledge, this measure has not yet been applied to neuro-
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Figure 4.5: Schematic representation of a controllability ellipsoid within a three-
dimensional state space (cylinder). The principal axes are given by directions that are
hierarchically ordered in terms of controllability. Any state that is reachable with a
unit or less input energy (given system’s architecture) will lie somewhere within the
controllability ellipsoid. In neuronal networks, the state space spans more than three
dimensions (Chapter 3).

science before, I hypothesised that the volume of the controllability ellipsoid will mir-
ror the changes in average controllability and that it will increase together with func-
tional connectivity in the developing circuits. If found to be true, this would likely
mean that the dysfunction inMecp2-null networks hinders potential therapeutic mod-
ulation within reasonable clinical constraints.

Analysis of controllable subspace reveals feasibility of therapeutically

controlling network dynamics in RTT

Compared genotypes Differencea Confidence interval p

HET vs KO −1.07 2.08 to 5.23 0.34

HET vs WT −3.41 -0.26 to 2.89 0.77

KO vs WT −5.49 -2.34 to 0.81 0.23

Table 4.5: Table summarising statistical differences in the volume of controllability
ellipsoid between genotypes (Friedman repeated measures test with multiple com-
parisons).
a Difference in average column rank.

I used the volume of the controllability ellipsoid V(ϵ) to quantify the overall
controllability of WT (n = 17), HET (n = 15), and KO (n = 15) neuronal networks. I
found no overall differences between different genotypes (Tab. 4.5), suggesting sim-
ilarities in controllable subspaces. This finding could support the notion that RTT is
characterised by a mixture of function (breathing, swallowing) and dysfunction (cog-
nitive and motor disability), which might require maintaining sufficiently controllable

31



neural dynamics. This could also be beneficial for potential therapeutic control.
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Figure 4.6: Box plot (median, interquartile range, minimum and maximum) of age
and genotype effects on the volume of controllability ellipsoid. DIV – days in vitro.
Genotypes: WT – wild type, HET – heterozygous, KO – Mecp2 knockout. ** p < 0.01.

The only significant difference across genotypes and developmental ages has
been observed between KO and HET cultures at DIV21, where the volume of the con-
trollable subspace of Mecp2-null networks was lower (Fig. 4.6, Tab. 4.6). This could
be potentially explained by the fact that WT cultures reached possible controllability
optimum, HET cultures were slightly developmentally delayed, and connectivity re-
finements led to apparent overcompensation in respect to KO cultures. This finding
also parallels notable changes in other metrics, also occurring at DIV21. However, the
statistical power of this finding was 0.59, which was below the power threshold of 0.8.
An increase in sample sizes from n = 15 to n = 26 would be required to confirm this
finding.
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Compared genotypes Age (DIV) U z p Effect size a

WT vs KO

14 287.00 0.22 0.821 n/a

21 322.00 1.55 0.122 n/a

28 320.00 1.47 0.141 n/a

35 307.00 0.98 0.326 n/a

WT vs HET

14 269.00 0.79 0.428 n/a

21 272.00 0.91 0.365 n/a

28 226.00 −0.79 0.428 n/a

35 270.00 0.83 0.406 n/a

HET vs KO

14 205.00 −1.12 0.263 n/a

21 161.00 −2.94 0.003 ** 0.72

28 214.50 −0.73 0.468 n/a

35 191.00 −1.70 0.081 n/a

Table 4.6: Table summarising the statistical results of pairwise comparisons (two-
tailed Mann-Whitney U test) between genotypes in respect to the volume of control-
lability ellipsoid. * p < 0.05, ** p < 0.01.
a Effect sizes reported only for statistically significant differences.
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5
Discussion

5.1 Findings summary
In this investigation, I

1. Found a genotype-dependent reduction in the effective dimensionality of net-
work dynamics in developing cortical circuits,

2. Found that wild type cultures exhibit an increased capability to traverse larger
surfaces of the energy landscape than other genotypes,

3. Found that despite the limited state-switching flexibility and diminished dy-
namical repertoire, Mecp2 deficient cultures had controllable subspaces equal
to other genotypes,

4. Shown the potential for the application of the analyses of network dynamics in
the study of in vitro cortical networks in health and in a mouse model of Rett
syndrome.
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5.2 Validity of approach and reliability of results

5.2.1 Cortical cultures for modelling circuit development

In vitro cultures were chosen because they allow control over the experimen-
tal conditions and the flexibility of approaches. Using MEAs, it is possible to probe
the activity of developing networks over several weeks with a temporal resolution
needed to infer functional connectivity and characterise neuronal dynamics. Dissoci-
ated neurons offer a simplified model of neurodevelopment lacking factors such as the
effects of sensory experience, the role of glia, the mechanical constraints of the skull
environment, and the various neuromodulatory signals that in situ circuits receive.
Therefore, one must be cautious when extrapolating any results to in vivo conditions.
However, by controlling for the factors above, one can infer mechanistic explanations
and study the fundamental principles governing network development in health and
disease models.

5.2.2 Microelectrode array recordings and spike detection

The large size and spacing of the electrodes on the array means that each of
them might record electrical activity from more than a single neuron. Conversely,
it is unlikely that more than one electrode records activity from the same neuron.
Therefore, this technique does not confer us with single-cell resolution. However,
this also means that each electrode can be conveniently abstracted as a node within a
network, with relationships between nodes calculated frommulti-unit activity (MUA).
Indeed, population recordings have revealed that even sparse sampling of network
MUA is insightful (Downes et al., 2012; Schröter et al., 2015).

Possible errors in spike detection depend on the choice of spike detection
method and parameters. In low signal-to-noise ratio conditions, threshold-based
methods perform poorly, necessitating the use of template-based methods. The ob-
vious challenge is the choice of appropriate templates that represent biophysically ac-
curate extracellular spike waveforms. I have mitigated this problem by using a novel
spike detection method with data-driven electrode-specific templates. Another prob-
lem is the choice of cost parameter. Because there was no ground truth such as paired
patch-clamp/juxtacellular and MEA recording, I instead used recordings where TTX
was used to validate cost parameters. I performed further validation of the spike de-
tection using synthetic data (Appendix A).
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5.2.3 Inferring functional connectivity from correlated

spontaneous neuronal activity

We can use spike trains extracted from the recorded voltage traces to infer
functional connectivity in developing networks using time-series analysis. Such ap-
proaches are helpful in that they reduce the influence of noise through only consider-
ing spike times and not correlated noise or measuring quiescent periods as, for exam-
ple, Pearson’s correlation. I chose STTC as a method for inferring functional connec-
tivity because it is independent of firing rates, robust to quiescent periods, mathemat-
ically tractable and interpretable (bounded by -1 and 1).

Possible errors in determining the functional connections might arise if in-
ferred relationships are byproducts of simpler phenomena, such as common spa-
tiotemporal tuning (Elsayed & Cunningham, 2017), or correlated noise. This neces-
sitates the normalization to random correlation levels to avoid false positives. To this
end, I have adapted and applied probabilistic thresholding (Lancichinetti & Fortunato,
2012, Appendix B).

5.2.4 Limitations of dimensionality and controllability

analyses

Calculations of the effective dimensionality rely on the duration of the time
bin within which the spiking activity is summed. With different durations, the focus
will shift from short to long timescale. In this study, I have chosen the short-timescale
correlation time bin of 25 ms (El-Gaby et al., 2021). Because neuronal spiking activity
often exhibits Poisson firing rate distributions (Mazzoni et al., 2007), I have applied a
variance stabilising transformation by taking the square root of summed activity in
each time bin (Yu et al., 2009).

The central assumption in calculating the controllability metrics is that the un-
derlying neuronal dynamics are linear (or linearised around a fixed point). Although
this might not always be the case, this assumption is commonly accepted in the study
of networked systems, especially where structural interpretations of dynamics are pre-
ferred (Gu et al., 2015). Moreover, structural controllability metrics assume a rigid
network architecture (Pasqualetti & Zampieri, 2014). Although there exists ample ev-
idence that functional connectivity patterns are highly correlated (Rosenbaum et al.,
2017) and constrained (Kordovan, 2019), by the underlying neuroanatomy, one must
always exercise caution when extrapolating the findings from functional to structural
networks. A recent study investigated the relationships between controllability calcu-
lated from functional (fMRI) and structural (tractography) networks, suggesting that
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further research into this area is needed (Gu et al., 2021).
Finally, it is important to recognise that the dimensionality, controllability, and

functional connectivity analyses were obtained using spontaneous neuronal activity.
This fact necessitates the question to what extent the captured dynamics represent
physiological state space. We could test this experimentally by perturbing the neu-
ronal activity out of equilibrium, thus simulating the potential drive that developing
cortical circuits receive from other brain areas (Mazzucato et al., 2016; Das & Fiete,
2020).

With these limitations in mind, I will interpret the obtained results below.

5.3 Interpretation of main findings

5.3.1 Mecp2 deficiency leads to deficits in the emergence

of functional subcommunities in cortical networks

I found that already at DIV14, WT cultures show decreased variability in neu-
ronal activity that remains constant over four weeks of early development (DIV14-
DIV35). This finding suggests an increased synchronisation of network dynamics
achieved through a decreased number of independent spiking patterns. Functionally,
network-wide coordination could support low-dimensional, interpretable neural code
suitable for global computations.

Starting from DIV14, I observed a decrease in the effective rank in HET cul-
tures, suggesting that they were developmentally delayed in respect to WT cultures
but later achieved similar levels of synchronisation. Together with high-dimensional
dynamics found in KO networks, these results point to a possible link between Mecp2
expression and capacity for subcommunity synchronisation. Interestingly, these find-
ings were robust to the growth of the networks during development as quantified by
the relative effective rank. This could further support the notion that connectivity
patterns regulate the complexity of network dynamics more than network size.

Network function requires a balance between dynamical flexibility reflected in
a large enough pattern repertoire to support local processing and network synchro-
nisation within and between subcommunities that enables efficient global processing.
The disruption of these mechanisms in KO cultures could be justified either by the lack
of the overall capacity for network synchronisation or substantial delay in develop-
ment that could not be observed in the time window of the experiment. To differenti-
ate between these possibilities, we could extend the study duration or focus on longer
timescales in the calculations of effective rank.
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5.3.2 Developmental changes in controllability metrics re-

veal network wiring in a manner optimised for control

During network development, I expected average controllability to increase
together with increases in functional connectivity. This relationship could be ex-
plained by the correlation between average controllability and node strength (the sum
of node’s weighted edges) (Gu et al., 2015). In the scope of Rett syndrome, the deficits in
average controllability could be explained by the cortical hypoconnectivity observed
anatomically and functionally in the mouse model of the disease (Shepherd & Katz,
2011; Durand et al., 2012; Sceniak et al., 2016).

I found developmental changes in average and modal controllability to be lim-
ited to WT cultures. These cultures had a higher average and lower modal control-
lability than KO cultures. Heterozygous cultures displayed an intermediate range of
values, suggesting a possible dose-effect relationship between controllability profiles
and the amount of expressed Mecp2. Additionally, Pasqualetti & Zampieri, 2014 have
found that isotropic networks are more challenging to control than anisotropic net-
works. Isotropic edge weight distribution means that each connection has the same
strength, whereas anisotropic networks are heterogeneous. If there is a single strong
link from an input node to the controlled node, the energy will be funnelled through
this connection, providing effective control. Conversely, if there are many weak con-
nections, the energy will be widely distributed, albeit with the loss of directionality
and magnitude.

Biologically, these findings can be explained by the stochastic wiring during
early cortical circuit development leading to densely but weakly connected networks.
Throughout development, there occurs the activity-dependent refinement of connec-
tivity promoting the maintenance of meaningful, and the pruning of weak connec-
tions (Richter & Gjorgjieva, 2017). This process relies, at least in part, on the functional
switch of GABA effects from excitatory to inhibitory and the maturation of N-methyl-
D-aspartate receptor (NMDAR) subunit composition, both of which are disrupted in
RTT (Tang et al., 2016; Mierau et al., 2016). Moreover, differential effects of these alter-
ations on the synapses onto pyramidal and parvalbumin-positive (PV) neurons could
lead to excitatory-inhibitory imbalances.

Therefore, both hypoconnectivity and edge weight distributions are altered in
RTT, and are plausible explanations of the observed deficits. We could investigate
this further by comparing control profiles of pyramidal and PV neurons, for example,
using optogenetic approaches or fluorescent markers to distinguish between these cell
populations.

In KO cultures, increased modal controllability together with decreased aver-
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age controllability suggests that Mecp2-deficient networks have a more limited dy-
namical repertoire than WT networks and that this repertoire is more restricted to
difficult-to-reach states. Altered timecourse of the specialization of these networks
could lead to disruptions in flexibility (Harlalka et al., 2019) in switching states and
more energy needed to control basic network function. These results are in line with
the intellectual disability affecting almost all, and autism spectrum disorder symptoms
observed in around 50% of the RTT patients.

Similarities in the volumes of controllable subspaces between KO and WT net-
works suggest that not all aspects of circuit function are disrupted by Mecp2 defi-
ciency. This could reflect that some aspects of neuronal function are preserved in
cortical circuits in RTT, leading to a balance of function and dysfunction observed in
human disease.

5.3.3 Unifying dimensionality and control theory ap-

proaches in the study of developing cortical networks

So far, I analysed dimensionality and controllability independently. Below, I
outline possible ways of combining the snapshots obtained by these methods into a
larger picture of network dynamics.

When neuronal dynamics are coupled, the patterns of activity generated by
the network can be described by relatively few latent modes (dimensions in state
space). Intuitively, exciting a lower number of modes requires fewer driver nodes
and less input energy, and therefore such a network will be easier to control on aver-
age. Conversely, steering network dynamics towards difficult-to-reach states requires
more flexibility conferred by a larger number of degrees of freedom (dimensions in
state space) that network activity can independently explore. Therefore, findings of
low dimensionality in neural data can be linked to higher average controllability, and
findings of many independent patterns of activity support higher modal controllabil-
ity.

Another link can be found at the level of local connectivity motifs. In this
study, the effective rank was operationalized to quantify the capacity of a network
to form functional subcommunities with shared patterns of activity. Mathematically,
the average controllability of the whole network is equal to the sum of controllability
of functional subcommunities weighted by the strength of the edges between them.
Therefore, the local subgroup synchronization reflected in the decrease in effective
rank will simultaneously increase the average controllability values.

Finally, at the whole-brain scale, population coding relies on combining ac-
tivities from thousands of neurons into commands that can be decoded using an in-
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terpretably low number of latent dimensions. If different functional subcommunities
(e.g. brain areas) are synchronized, the computations will require less cognitive effort
because the easily reachable subspace will be larger. Disease processes, such as RTT
might impair this ability, leading to deficits in network control. The abstract network
analyses presented here apply to other biological networks, such as larger-scale brain
networks, and could offer a potential avenue for future research of network dynamics
in RTT across scales.

5.4 Future directions

5.4.1 Characterising cell type-specific contributions to net-

work dynamics

Circuit pathology in RTT is thought to originate from a disruption in E-I bal-
ance stemming from deficits intrinsic to particular neurons or neuronal classes (Tang
et al., 2016). The diminished excitatory drive in the network and disruptions in syn-
chronisation brought on principally by parvalbumin-positive (PV) interneuron dys-
function (Mierau et al., 2016) could be rescued by the enhancement of activity. Genet-
ically, it has been achieved in a study whereby re-introduction of Mecp2 at later devel-
opmental stages was able to reinstate some behavioural phenotype (Guy et al., 2007).
Pharmacologically, a recent report has improved the activity-dependent transcription
of some critical genes, neuronal morphology and function in vitro, and rescued motor
skills, spatial memory, and delayed the progress of the disease in a mouse model of
RTT (Scaramuzza et al., 2021).

However, the modulation of network function needs to be tightly controlled,
as it might have differential effects on excitatory and inhibitory cells. Therefore, func-
tionally dissecting these classes of neurons would be an important future step in net-
work analyses. Experimentally, this could be done either anatomically using fluores-
cent markers, functionally using optogenetics, or with a combination of both. The
putative inhibitory cells could then be characterised based on spike waveforms, spik-
ing frequency and firing regularity.

5.4.2 Expanding control analysis to directed and signed

networks

Undirected networks provide a good intuition about network function and are
commonly used in network neuroscience (Bullmore & Sporns, 2009). However, the
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flow of information in neuronal circuits is often directional. With a single-cell resolu-
tion, we could infer putative excitatory and inhibitory connections from spike trains
using sophisticated computational methods. Some possibilities include generalized
linear models with cross-correlograms (Kobayashi et al., 2019) or approaches from in-
formation theory, including Granger causality or transfer entropy (Wibral et al., 2014).
Such a framework could offer insights into directional control in terms of distinguish-
ing source, sinks and conduit nodes (Campbell et al., 2015), the minimum number of
controllers (Liu et al., 2011) and be used to cross-validate the characterisation of neu-
ronal subtypes (Ren et al., 2020).

In the current investigation, the challenge in inferring directed connectivity
was that most of the algorithms outlined above require larger volumes of data than
collected during 12-minute recordings. Extending duration of MEA recordings to 30–
60minutes would be needed andwould require tighter pH control during experiments.
Another issue is that some of these methods are sensitive to multi-unit activity (i.e.
unsorted spikes). In this study, I did not attempt spike sorting because it was not
necessary for the characterisation of neuronal network dynamics (Trautmann et al.,
2019) and because I have observed overlapping spike waveforms (Wagenaar et al.,
2006) which could have affected the classification. Spike sorting could be performed
in future studies when ground-truth such as paired MEA/juxtacellular or MEA/patch-
clamp recordings becomes available.

5.5 Implications of research
In this study, I investigated the mechanisms underlying the emergence of net-

work dynamics in developing cortical circuits using control theory and dimensionality
analysis. Using electrophysiological recordings from MEAs, I probed the spontaneous
network activity over several weeks of development. I used the detected spike trains
to quantify effective dimensionality and to infer functional connectivity. By mod-
elling the relationships between network structure and function using control theory,
I characterised dynamical network repertoire and its controllability.

Studying network dynamics offers a framework for the study of neuronal cir-
cuit development in health and disease. With functional networks forming in vitro,
it is possible to explore the circuit-level effects in disease models. I have shown the
utility of these approaches in studying RTT. I found that Mecp-deficiency disrupts the
emergence of functional subcommunities in cortical circuits at early developmental
stages, distorts network controllability by constraining state transitions and shifting
the balance in a dynamical repertoire towards difficult-to-reach states and that it is
feasible to modulate network activity based on the volume of controllable subspace.
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With this information, it is possible to classify the extent of function and dys-
function in health and RTT, identify the nodes with the most influence over the net-
work function, and design strategies to control these nodes for mechanism-based ther-
apeutic modulation that could be tested experimentally in the future.
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A
Spike detection

A.1 Improving and validating spike detection
Initial investigation of microelectrode array (MEA) recordings analysed in this

study revealed they had a low signal-to-noise ratio (SNR) and were non-stationary. In
such conditions, identifying spikes is challenging. Indeed, I have found that the spike
detection methods previously used by our group either over- or under-counted the
spikes. The threshold-based spike detection algorithm adapted from Schroeter et al.
(2015) was overly sensitive to the selection of a thresholdmultiplier and proved unsuit-
able for non-stationary baseline voltage fluctuations. This resulted in a harsh trade-off
between sensitivity and precision. Template-based methods focus on the stereotypi-
cal waveforms (shapes) of the action potentials and are better suited for the analysis
of noisy recordings. The obvious challenge, however, is the selection of appropriate
templates. The algorithm proposed by Nenadic & Burdic (2004) relies on continuous
wavelet transform (CWT) with templates selected from the built-in wavelet bank from
MATLAB Wavelet Toolbox. Because these wavelets poorly resemble biological action
potential waveforms, this algorithm lacks the desired sensitivity.

Therefore, I considered searching the neuroscience and biomedical engineering
literature for alternative spike detection algorithms.
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A.1.1 Threshold-based spike detection

The simplest spike detection methods aim to characterise the baseline volt-
age magnitude by obtaining a measure of variability or dispersion such as standard
deviation, median absolute deviation, or root-mean-square of the signal. The next
step is multiplying this value by a user-predefined multiplier (determined empirically)
and applying thus obtained threshold to the voltage trace. Any signal exceeding this
threshold will be counted as a spike. Sometimes, an artificial refractory period is
imposed. Variations of this method are ubiquitous and perform well in high signal-
to-noise ratio (SNR) conditions. However, they fail whenever there is a significant
amount of multi-unit activity or the SNR is low.

A.1.2 Templated-based correlation

More sophisticated spike detection methods rely on the shape (waveform) of
the incoming signal. The aim is to obtain similarity scores by matching portions of
the recording to the pre-selected templates. These coefficients are then thresholded to
classify the waveforms most closely resembling the original templates as spikes. Sev-
eral methods have been proposed utilising wavelet transforms (discrete, continuous,
stationary) or template matching algorithms. The obvious challenge in this approach
is obtaining reasonable templates in the first place.

Having identified a potential avenue for improving one of the existingmethods,
I have developed, validated, and benchmarked a novel spike detection algorithm.

A.2 Method development
The spike detection method developed in this study aims to combine the con-

tinuous wavelet transform (Nenadic & Burdic, 2004) with data-driven templates. It
capitalises on both of these approaches. Tailoring the templates to specific recording
channels ensures precision, whereas the sensitivity is increased by multiresolution
scaling. This idea is best captured by the name: Wavelet Transform with Electrode-
Restricted Spike Templates (WATERS). A comparison between generic and custom
templates is shown in Fig. A.1.

In the first step, the average spike shapes are extracted from the filtered voltage
traces using a simple threshold method. Next, the obtained waveforms are interpo-
lated, smoothed, and projected onto the space of functions orthogonal to constants. If
the resultant signal satisfies the requirements (it is zero-mean and square norm one),
a mother wavelet is adapted (Fig. A.2).
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(a)

(b)

Figure A.1: Differences between wavelets from MATLAB Wavelet Toolbox and cus-
tom templates adapted from data. (a) Generic wavelets. Notice poor resemblance
to physiological extracellular spike waveforms. (b) Data-driven templates adapted
independently for each electrode (three examples shown).

Figure A.2: Procedure of adapting a custom wavelet. First, a pre-specified number
of spikes are detected using the threshold method and corresponding waveforms are
extracted (left). Then, at each sample the median value is obtained, yielding the
median spike waveform (middle). Finally, the template is interpolated and smoothed,
and the wavelet is adapted (right).

It is then stretched in time and voltage domains across a specified number of
scales, and the degree of similarity between template and signal is quantified using
continuous wavelet transform (Fig. A.3). The acquired coefficients are thresholded
using Bayesian hypothesis testing with a predefined cost parameter that specifies the
trade-off between the cost of omission and the cost of commission of a signal segment
to the spike pool. Thus obtained event times are used to extract spike waveforms,
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and at this step an optional post hoc artifact removal can be employed to account for
signals with biologically implausible amplitudes.

Figure A.3: The inner workings of the spike detection algorithm. (Top) The coeffi-
cients obtained by scaling the wavelet and correlating it with voltage trace. (Middle)
Reconstruction of coefficients based on the cost parameter. (Bottom) Filtered voltage
trace with spike markers over detected spikes.

Validation of spike detection results in this investigation was especially chal-
lenging as there was no ground truth data such as simultaneous MEA and patch clamp
or juxtacellular recordings. Instead, validation was performed using pharmacology
(tetrodotoxin, Fig. A.4) andmanual verification of voltage traces with spike timemark-
ers. To this end, I have also developed an interactive user interface application avail-
able at my GitHub: https://github.com/jeremi-chabros/WATERS.
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(a)

(b)

Figure A.4: Optimising cost parameters for spike detection. (a) Scatter plots showing
spike counts before and after the application of tetrodotoxin (TTX). (b) Plot showing
the ratio of the spikes detected before and after the application of TTX with respect
to the cost parameter.

A.3 Method benchmarking
Development of a novel spike detection algorithm was motivated with unsat-

isfactory performance of available published methods. Therefore, a thorough bench-
markingwas required to determine if themethod in question is indeed superior. Quali-
tative benchmarking was performed manually. For quantitative benchmarking, a syn-
thetic data approach modified from Lieb et al. (2017) was used. From a recording, elec-
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Figure A.5: A graphical summary of the procedure used to create synthetic traces
from real MEA data.

trode, and spike detection method selected at random, 20 spike templates have been
chosen with full blinding to their sources. Templates were then randomly scaled, re-
shaped, and convolved with an MEA correlated noise model with magnitude adjusted
to the SNR observed in our data (2.5–3.5). Spiking frequencies and recording durations
of the synthetic traces have also been matched to experimental data (Fig. A.5).

The results of the benchmarking are shown in Tab. A.1.

55



Method DR (%) FP (%)

WTEO 83.23 16.77

GABR 88.09 11.91

SWTO 77.80 22.20

MTEO 85.86 14.14

SWTS 84.71 15.29

ABS 71.96 28.04

WATERS 95.30 4.70

THR 46.62 53.38

Table A.1: The results of the benchmarking of the spike detectionmethods. Averaged
across 20 trials. Duration of signal between 30 and 600 seconds. Spiking frequency
between 0.5 Hz and 20 Hz. SNR between 2.5 and 3.5. DR: detection rate, FP: false
positive rate. WTEO: wavelet based Teager energy operator, GABR: Gabor transform,
SWTO: stationary wavelet transform Teager energy operator, MTEO: multiresolution
Teager energy operator, SWTS: stationary wavelet transform, ABS: absolute thresh-
olding algorithm, WATERS: a novel spike detection developed in this investigation,
THR: threshold-based method previously used by our lab.
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B
Functional connectivity

In current investigation, the functional activity has been inferred from sponta-
neous multi-unit activity. To this end, I have applied the spike time tiling coefficient
(STTC, Cutts & Eglen, 2014). This measure has been chosen because of its mathemat-
ical tractability, ease of use and interpretation, and other advantages outlined below.

Necessary properties

• Symmetry. STTC calculated from neuron A in respect to neuron B is the same
as from neuron B to neuron A.

• Robustness to variations in firing rates.

• Robustness to recording duration.

• Mathematical tractability and ease of interpretation. This measure is bounded
by -1 (perfect anticorrelation) and 1 (perfect correlation).

• Robustness in variations in the time lag parameter.

• Ability to discriminate between lack of correlation and anticorrelation.

Desirable properties

• Ignores periods of quiescence.
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• Naive to the spike time distribution (i.e. does not assume a particular distribu-
tion in firing rates).

• Minimal number of free parameters. This method relies on a single adjustable
parameter.

Mathematical formulations and usage

STTC relies on a single lag parameter that specifies the period (in ms) before
and after a given spike. Then, the method searches this time bin for spikes from
different channel. Mathematically, it can be defined as

STTC = 1
2
⎛
⎜
⎝
PA – TB
1 – PATB

+ PB – TA
1 – PBTA

)
where

TA is the proportion of the total recording time which lies within ±Δt of any
spike from A. TB is calculated analogically.

PB is the proportion of spikes in A which lie within±Δt of any spike from B. PA
is calculated analogically.

Graphical summary of the method can be found in Fig. B.1.

(a)

(b)

Figure B.1: Graphical representation of the STTC. (a) TA is given by the fraction of
the total recording time (black) which is covered (tiled) by blue bars. Here TA is 1/3.
(b) PA is the number of green spikes in A (3) divided by the total number of spikes in
A (5). Here PA is 3/5. Figure adapted from Cutts & Eglen, 2014.
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Figure B.2: Probabilistic thresholding. The average threshold value (left) and coeffi-
cient of variance (right) across iterations. The aim is to find a value of coefficient of
variance lower than the average threshold in the part of the curve where both values
have conspicuously stabilised.

Probabilistic thresholding

Despite the accuracy of STTC, it can still return erroneous values. For exam-
ple, if a single electrode simultaneously records frommultiple neurons, the probability
that the electrical activity from this electrode will be randomly correlated with another
increases. To alleviate this problem, we can generate synthetic data by shuffling the
original spike trains, and only accept correlations that occur above chance. In current
investigation, to generate synthetic data I have used circular shifting because it pre-
serves the physiological delays between events (i.e. it is more accurate than randomly
generated spike trains).

This procedure relies on two pre-specified parameters: the number of itera-
tions used in shuffling the original data, and the probabilistic threshold. I have used
the widely accepted threshold of 0.05 meaning that the probability of the connection
between a pair of neurons being falsely inferred (false positive) was 5%. To determine
the required number of iterations, I have generated a cumulative curve of the number
of removed connections and chosen the number of iterations at which it stabilised. I
have chosen 250 iterations. A sample plot is shown in Fig. B.2.
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C
Effective rank

The neuronal activity recorded at each electrode can be described by a binary
vector where ones represent action potentials, and zeros represent periods of quies-
cence. First, I divided each vector into 25 ms time bins, and calculated the spiking
frequency in each time bin. Then, I applied variance stabilising transformation by
taking the square root of the obtained values. Finally, I created a matrix of network
activity by stacking the activity vectors from all electrodes so as each row described
the evolution of nodal dynamics throughout the recording, and each column described
the activity of the whole network in a given time bin. I have thus obtained a matrix
M ∈ RN×t where N is the number of electrodes, and t is the number of time bins.

Like with PCA, the calculation of effective rank begins with singular value
decomposition

M = UΣV

where U and V are unitary matrices of size N × N and t × t, respectively, and Σ is an
N× t diagonal matrix containing the (real positive) singular values

σ1 ≥ σ2 ≥ · · · ≥ σQ ≥ 0,

with Q = min{N, t}. For notational simplicity, we further define σ = ⎛
⎝σ1,σ2, . . . ,σQ

)T
and the singular value distribution

pk = σk
||σ||1

for k = 1, 2, . . . ,Q,
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where the superscript T denotes the transpose, and || · ||1 the ℓ1-norm defined as

||σ||1 =
Q∑
k=1

|σk|.

In the sequel, all logarithms are to the base e, andwe adopt the convention that 0 log 0 =
0. The effective rank is defined as follows.

Definition: effective rank

The effective rank of the matrix M, denoted erank(M) is defined as

erank(M) = exp{H(p1, p2, . . . , pQ)},

where H(p1, p2, . . . , pQ) is the (Shannon) entropy given by

H(p1, p2, . . . , pQ) = –
Q∑
k=1

pk log pk.

Note that the above entropy is often referred to as spectral entropy.

Relationship between bin duration and effective rank

The choice of the timescale at which neuronal dynamics are studied is arbi-
trary. Shorter time bins will shift the focus to fine temporal activity patterns (such as
mono- or disynaptic), whereas longer time bins will better describe long-term trends
in network dynamics (multisynaptic, populational). Moreover, the choice whether to
calculate the effective rank from correlation matrix of neural activity, or directly from
spike trains, will also depend on the approach. Using correlated activity will blur the
temporal resolution of the inferred dynamics but is more robust to stochastic spiking
and random correlations, for example between quiescent periods. With time-series
data, the effects of noise are reduced, but the choice of the timescale will have a larger
impact on the observed dynamics. Quantitative differences between these approaches
are summarised in Fig. C.1.
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Figure C.1: The effects of different approaches in calculating the effective rank on
dynamical dimensionality. Correlation means using correlation matrix, and activity
means using raw spiking data. vst - variance stabilising transformation. Data from a
sample recording of a wild type culture at DIV28 (culture code: MPT200209_4A).
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D
Network controllability

D.1 Network control theory: background
The core of network control theory (as applied to Neuroscience) is the struc-

tural network of neurons and their connections. To model the temporal evolution of
network dynamics as a function of its connectivity, we defne a linear time-invariant
(LTI) system:

.x(t) = Ax(t)

where the column vector x(t) =
[
x1(t), x2(t), . . . , xN(t)

]T represents the state of the
system ofN nodes at time t. The adjacencymatrixA ∈ RN×N denotes the relationships
between the nodes. In this context, this relation is operationalized as the functional
connectivity between each pair of neurons.

In order to impose control over this system, we need to specify inputs. Our
model then takes the form

.x(t) = Ax(t) + Bκuκ(t)

where the binary input matrix Bκ ∈ RN×m denotes the set of m control nodes. The
term uκ(t) ∈ Rm×1 is a vector ofm functions denoting the control input, which is the
amount of input injected into each of the m control nodes at each time point t. Over
time, uκ(t) denotes the injected control input over time. Note that substituting Bκ

with identity matrix I ∈ RN×N is equivalent to calculating controllability from each
node iteratively, and represents the overall controllability from any input.
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By applying to this model the electrophysiological data collected with the use
of micro-electrode arrays (MEA), we can answer a multitude of questions about how
the structure of a network influences its dynamics. In current investigation, we are
particularly interested in whether in vitro neural networks are controllable and how
the different control theoretical metrics are shaped by neurodevelopment in health
and in mouse model of Rett syndrome.

D.2 The effects of time system on controllability

metrics
In this investigation, I have used the discrete-time model of network dynamics.

However, this analysis can be extended to continuous time, yielding equivalent (to a
scalar constant) results.

D.2.1 Discrete time

Natural system

.x(t) = Ax(t)

Controlled system

.x(t) = Ax(t) + Bκuκ(t)

Normalization

For interpretability of results, I scaled the adjacency matrix

Anorm = A
λ(A)max + c

– I

where λ(A)max denotes the largest eigenvalue of A, and c is a scaling constant. By
changing c, one can alter the transfer function and enforce the system to dissipate
energy (tend to zero) to a variable extent. Note that this normalisation only scales the
entries of A without the loss of generality.
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Controllability Gramian

The controllability Gramian is central to calculating almost every controllabil-
ity metric. For a continuous time system it can be computed as

Wc =
∫ ∞

0
exp ⎛

⎝Aτ
)
BκBT

κ exp ⎛
⎝A

Tτ
)
dτ

or, alternatively, by solving the Lyapunov equation

AWc +WcAT + BκBT
κ = 0

limitation being that it can only be applied to (Hurtwitz) stable systems.
Almost as important as theGramian itself is its eigendecomposition. The eigen-

values of the controllability Gramian determine how difficult is to control network
dynamics in a direction specified by the corresponding eigenvector. Larger eigenval-
ues mean less control energy, whereas smaller eigenvalues specify directions in state
space where control is difficult (energetically costly). This fact will be useful in under-
standing the average controllability.

Modal controllability

ϕi =
N∑
j=1

⎛
⎝1 – eλj(A)

)
v2ij

where λj(A) and vj are the j-th eigenvalue and eigenvector ofA. Note that thismeasure
is a sum of modes that can be excited by a given node, weighted by the corresponding
eigenvalues (i.e. the larger the eigenvalue, the more controllable that mode is).

D.2.2 Discrete time

Natural system

x(t + 1) = Ax(t)

Controlled system

x(t + 1) = Ax(t) + Bκuκ(t)
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Normalization

Anorm = A
|λ(A)max| + c

Controllability Gramian

Wc =
T–1∑
τ=0

AτBκBT
κ
⎛
⎝A

T
)τ

Modal controllability

ϕi =
N∑
j=1

⎛
⎝1 – λ2j (A)

)
v2ij

D.2.3 Metrics independent of time system

Average controllability

ctrbave = Tr(Wc)

Notice that the trace of the Gramian can be calculated as the sum of the elements on its
diagonal or, more importantly, as the sum of its eigenvalues. Because, due to the above
normalization, the eigenvalues are close to 1, this metric would be strongly biased by
the network size. I have controlled for it while calculating the average controllability
by dividing obtained scores by the number of active nodes.

Controllability ellipsoid

We can define the volume of the controllability ellipsoid as

V(ϵ) = Hn
√

det(Wc),

where n is the dimension of the hyperellipsoid (equal to the number of nodes in the
network), and Hn is the hypersphere volume coefficient given by

Hn = π
n
2

Γ(n2 + 1)
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For simplicity, in the current report the volume of the controllability ellipsoid has been
approximated by excluding the hypersphere volume coefficient from the calculations.
However, because in higher dimensions the determinant becomes numerically prob-
lematic, and because logarithm is monotone, I have adapted the volume of controlla-
bility ellipsoid as proposed by Summers et al., 2016.

V(ϵ) = log detWc
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