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Abstract

Despite the advances in understanding the architecture of neural networks, the study
of theirdynamics remainsamajor challenge. Analysisof suchcomplexdynamical sys-
tems is also at the heart of control engineering, where it is central to the design of ro-
bust control strategies. Here, we apply the recent developments in the field of struc-
tural controllability [1, 2] to the study ofmicroelectrode array (MEA) recordings from
invitrocorticalcultures[3]. Thiswillenableustoexaminehowneuralnetworkdynam-
icsareshapedbyneurodevelopment inhealthandinamousemodelofRettsyndrome.

Aims

1. Compare and validate spike detectionmethods for in vitro cortical cultures.

2. Infer functional connectivity of cortical networks from the spontaneous activity.

3. Investigate control theoretical approaches for the analysis of neural network dy-
namics.

4. Elucidate the effects of developmental age andMecp2 deficiency on the dynami-
cal properties of developing cortical circuits

Background

Rett syndrome is a childhood neurodevelopmental disorder that leads to severe im-
pairments, affecting nearly every aspect of the child’s life. It currently remains with-
out cure [4]. Findingsof this projectmighthelp elucidate themechanismsunderlying
the disruption in brain function, identify strategies for therapeutic intervention and
establish a pipeline for the testing of possible drug candidates.
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Experimentalmethods

MurineprimarydissociatedcorticalculturesweregrowndirectlyonMEAchips(Multi-
Channel Systems 60MEA200/30iR-ITO-gr). The 60 electrodes were arranged in an
8x8 grid (without corners) with 59 recording electrodes and 1 reference electrode.
Changes in voltage (μV scale) were sampled at 25 kHz frequency, and sent through an
amplifier to the acquisition software (MCRack).
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Networkcontrollability

Thecoreofnetworkcontrol theory isthestructuralnetworkofneuronsandtheirconnections. To
model the temporal evolutionof networkdynamics as a functionof its architecture,we consider
a continuous-time linear time-invariant (LTI) system,

.
x(t) = Ax(t) + Bκuκ(t)

where thecolumnvectorx(t) = [x1(t), x2(t), . . . , xN(t)]
T represents the state (theneuronal spiking

activity) of the systemofN neurons at time t. The adjacencymatrixA ∈ RN×N denotes the func-
tional connectivity between each pair of neurons. B ∈ RN×m is an input matrix whose columns
define the directions alongwhich time-varying inputsu(t) ∈ Rm×1 actuate the system.
The central question of this investigation is: Can the state x(t) of the network be steered along
anydirection v in state space, using control inputsu(t) that canonly actuate the network along a
restricted set of directions (definedby the columnsofB)? Answers canbe found in the controlla-
bility Gramian:

Wc =
∫ ∞

0
exp(Aτ)BκBT

κ exp(A
Tτ)dτ.

Fig. 1: Controllability in an energy landscape

Derived fromWc, nodal controllabilitymetrics describewhich nodes in the network aremost in-
fluential in constraining or facilitating changes in state trajectories. Each of these diagnostics
captures a different goal [5].

• Average controllability identifies nodes that, on average, can steer the system into different
states with little effort (that is, input energy). In other words, nodes with high average con-
trollability are able to drive the network towardsmany easily reachable states.

ctrbave = Tr(Wc)

• Modal controllability identifies nodes that canpush the network into difficult-to-reach states
(states that require substantial input energy).

φi =
N∑
j=1

(1 – eλj(A))v2ij

where λj(A) and vj are the j-th eigenvalue and eigenvector ofA.

Drivers and followers

The extent to which a given node can drive the network around the state space, as
quantifiedbyaveragecontrollability, enablesus toestablishdriverand followernode
subpopulations.
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Fig. 2: Heatmaps of nodal controllability in a sample wild type culture across development (DIV –
days in vitro). Larger controllability values mean easier control. Drivers in yellow, followers in navy
blue.

Results

Fig. 3: Box plot (median, interquartile range, minimum and maximum) of effects of age and geno-
type on network controllability (n = 15). WT – wild type, KO – Mecp2 knockout. Outliers are plotted
separately using the ‘+’ symbol. * p < 0.05, ** p < 0.01 (Welch’s t-test)

Wefoundthat invitrocorticalnetworkssupportadiverserangeofpossibledynamics
which increaseswith age. Anoverall increase in average controllabilitywas expected
to reflect the increase in connectivity over development. This supports the notion
that cortical circuits become increasingly structured in a manner highly optimized
for network control, as postulated by [6]. These results suggest key neurophysiolog-
ical changes that may be occuring during development, driving the system towards
an increasing capability to traverse a larger surface of the energy landscape.
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