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Controllability

Abstract Network controllability Drivers and followers
Despite the advances in understanding the architecture of neural networks, the study The core of network control theory is the structural network of neurons and their connections. To The extent to which a given node can drive the network around the state space, as
of their dynamics remains a major challenge. Analysis of such complex dynamical sys- model the temporal evolution of network dynamics as a function of its architecture, we consider quantified by average controllability, enables us to establish and followernode
tems is also at the heart of control engineering, where it is central to the design of ro- a continuous-time linear time-invariant (LTI) system, subpopulations.
bust control strategies. Here, we apply the recent developments in the field of struc-
tural controllability [1, 2] to the study of microelectrode array (MEA) recordings from x(£) = AX(t) + Buy () DIV 14 DIV 28 |
invitro cortical cultures[3]. Thiswill enable us to examine how neural network dynam- :::. ® High
icsareshaped by neurodevelopmentin healthandinamouse model of Rettsyndrome. where the column vector x(t) = [x1(£), x5(0), . . ., xp(£)]" represents the state (the neuronal spiking ® 0000 ® ®
- activity) of the system of N neurons at time t. The adjacency matrix A € RV*N denotes the func- 000 ®_,
Aims tional connectivity between each pair of neurons. B € RV*™ js an input matrix whose columns ..::.::: : ®
define the directions along which time-varying inputs u(¢) € R™*1actuate the system. ® 00000 o
1. Compare and validate spike detection methods for in vitro cortical cultures. The central question of this investigation is: Can the state x(¢) of the network be steered along o 000 Low
any direction vin state space, using control inputs u(¢) that can only actuate the network along a
2. Infer functional connectivity of cortical networks from the spontaneous activity. restricted set of directions (defined by the columns of B)? Answers can be found in the controlla-

Fig. 2: Heatmaps of nodal controllability in a sample wild type culture across development (DIV -

bility Gramian: days in vitro). Larger controllability values mean easier control. Drivers in yellow, followers in navy

3. Investigate control theoretical approaches for the analysis of neural network dy-

namics. 50 blue.
: , . Wc= / exp(At)BB, exp(A't)dT.
4. Elucidate the effects of developmental age and Mecp2 deficiency on the dynami- 0 R It
cal properties of developing cortical circuits CSUItS
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Rett syndrome is a childhood neurodevelopmental disorder that leads to severe im-
pairments, affecting nearly every aspect of the child’s life. It currently remains with-

Modal controllability:
Distant, difficult-to-reach
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out cure [4]. Findings of this project might help elucidate the mechanisms underlying = £ 0985 a T
: .. : . . : . ) states ks = '
the disruption in brain function, identify strategies for therapeutic intervention and S =
establish a pipeline for the testing of possible drug candidates. g 38 _ 5
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Loss of Mecp2 Disrupts synaptic Alters network de- Decline in cortical - Average controllability: Age (DIV) Age (DIV)
changes gene ex- function velopment function in human Nearby, easy-to-reach
' disease
pression ! Energy states Fig. 3: Box plot (median, interquartile range, minimum and maximum) of effects of age and geno-

type on network controllability (n = 15). WT — wild type, KO — Mecp2 knockout. Outliers are plotted

Experimental methods Fig. 1: Controllability in an energy landscape separately using the +" symbol. * p < 0.05,** p < 0.01 (Welch's t-test)

We foundthatinvitro cortical networks supportadiverse range of possible dynamics
L o . . . . Derived from W¢, nodal controllability metrics describe which nodes in the network are most in- whichincreases with age. An overall increase in average controllability was expected
Murine primary dissociated cortical cultures were grown directly on MEA chips (Multi- fluential in constraining or facilitating changes in state trajectories. Each of these diagnostics to reflect the increase in connectivity over development. This supports the notion
Channel Systems 60MEA200/30iR-ITO-gr). The 60 electrodes were arranged in an captures a different goal [5] | that cortical circuits become increasingly structured in a manner highly optimized
8x8 grid (without corners) with 59 recording electrodes and 1 reference electrode. ' for network control, as postulated by [6]. These results suggest key neurophysiolog-
Changes in voltage (uV scale) were sampled at 25 kHz frequency, and sent through an - Average controllability identifies nodes that, on average, can steer the system into different ical changes that may be occuring during development, driving the system towards

amplifier to the acquisition software (MC Rack). states with little effort (that is, input energy). In other words, nodes with high average con- an increasing capability to traverse a larger surface of the energy landscape.

trollability are able to drive the network towards many easily reachable states.
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